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Abstract: The review introduces the stages of formation and experimental confirmation of the
hypothesis regarding the mutual potentiation of neuroprotective effects of hypoxia and hypercapnia
during their combined influence (hypercapnic hypoxia). The main focus is on the mechanisms and
signaling pathways involved in the formation of ischemic tolerance in the brain during intermittent
hypercapnic hypoxia. Importantly, the combined effect of hypoxia and hypercapnia exerts a more
pronounced neuroprotective effect compared to their separate application. Some signaling systems
are associated with the predominance of the hypoxic stimulus (HIF-1α, A1 receptors), while others
(NF-κB, antioxidant activity, inhibition of apoptosis, maintenance of selective blood–brain barrier
permeability) are mainly modulated by hypercapnia. Most of the molecular and cellular mechanisms
involved in the formation of brain tolerance to ischemia are due to the contribution of both excess
carbon dioxide and oxygen deficiency (ATP-dependent potassium channels, chaperones, endoplasmic
reticulum stress, mitochondrial metabolism reprogramming). Overall, experimental studies indicate
the dominance of hypercapnia in the neuroprotective effect of its combined action with hypoxia.
Recent clinical studies have demonstrated the effectiveness of hypercapnic–hypoxic training in
the treatment of childhood cerebral palsy and diabetic polyneuropathy in children. Combining
hypercapnic hypoxia with pharmacological modulators of neuro/cardio/cytoprotection signaling
pathways is likely to be promising for translating experimental research into clinical medicine.

Keywords: hypoxia; hypercapnia; neuroprotection; blood–brain barrier permeability; apoptosis
inhibition; antioxidant systems; chaperones; A1 adenosine receptors; endoplasmic reticulum;
mitochondrial ATP-dependent potassium channels; HIF-1α

1. Introduction

It is well known that hypoxic exposure is not only a damaging factor but also a method
capable of increasing the tolerance of the brain to oxygen deficiency/ischemia [1,2]. To
achieve a neuroprotective effect using hypoxic interventions, researchers typically employ
preconditioning regimens (FiO2 = 8–12%, 1 to 3 sessions of 30–120 min) and intermittent
training (FiO2 = 9–16%, 5 to 45 sessions of 48–90 min per day), which are conducted 24 h
before modeling cerebral ischemia [2]. By “ischemia”, researchers usually mean an episode
of prolonged cessation of perfusion (for 10 min or more) in a specific region of the brain,
which, in the case of ischemia–reperfusion injury, is accompanied by the restoration of
blood flow to the ischemic area [2].
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However, there has been a significant increase in interest in studying the therapeutic
effectiveness of permissive hypercapnia. Permissive hypercapnia is a widely used ven-
tilation strategy in the practice of intensive care and resuscitation, showing significant
protective effects in several models of neuronal damage in vitro and in vivo [3]. It has been
demonstrated that carbon dioxide at nontoxic doses (PaCO2 = 60–100 mmHg for 2 h) exerts
a protective effect on the brain during ischemia–reperfusion injury [3,4].

In 2009, based on experimental studies showing a pronounced increase in the brain’s
tolerance to ischemia under the influence of hypercapnic–hypoxic training, the hypothesis
of potentiation of the neuroprotective effects of hypoxia and hypercapnia under their
combined action was formulated [5]. In 2013, experimental confirmation of this hypothesis
was obtained in a comparative study of the isolated and combined effects of hypoxia
and hypercapnia [6]. In the same year, the hypothesis was supplemented by the concept
of the dominance of hypercapnia in the effect of forming the body’s resistance to acute
oxygen deficiency under its combined action with hypoxia [7]. Subsequently, on a model of
ischemic stroke in rats, it was shown that the combined effect of hypoxia and hypercapnia
(hypercapnic hypoxia) significantly reduces the volume of brain damage compared to their
isolated effects [8].

However, the neuroprotective mechanisms underlying this effectiveness have been
poorly studied. At the same time, these data provide a fundamental basis for the de-
velopment of clinical methods of respiratory training, including in combination with
pharmacological agents, for the prevention and treatment of stroke, vascular dementia,
neurodegenerative diseases, and perinatal hypoxic injuries.

Among the basic molecular and cellular mechanisms of the formation of ischemic toler-
ance of the brain are the maintenance of electrolyte balance and mitochondrial metabolism
of nerve cells, adaptive effects of mitoK+

ATP-channels and adenosine receptors, protection
of cells from free radicals, mobilization of endoplasmic reticulum, effects of neurotrophic
factors and chaperones, neuro- and synaptogenesis, inhibition of apoptosis, and preser-
vation of selective permeability of the blood–brain barrier, as well as epigenetic effects of
HIF-1α [9–12].

This review aims to systematize the available information on neuroprotective mecha-
nisms that form ischemic tolerance of the brain after intermittent exposure to hypercapnic
hypoxia and to determine potential correlations between different signaling pathways of
these mechanisms. These data complement our hypothesis about the effect of mutual po-
tentiation of the neuroprotective effects of hypoxia and hypercapnia under their combined
action and the important role of the hypercapnic component in this mechanism.

2. Functioning of Intracellular Systems, Organelles, and Messengers

2.1. Maintenance of Electrolyte Balance and Ca2+ Homeostasis

The distribution of electrolytes between the intra- and extracellular environments, as
well as the levels of Ca2+ ions within the cytoplasm and cellular organelles, determine the
viability of neurons in the ischemia-tolerant brain [13]. Therefore, many neuroprotective
mechanisms actively modulate signaling pathways involved in regulating this balance. For
example, it is known that in the cell membrane of ischemia-resistant neurons in the CA1
region of the hippocampus, there is high activity of Ca2+-ATPase and enhanced binding of
Ca2+ in mitochondria [14,15]. The intracellular calcium level in neurons of this hippocampal
area in animals tolerant to ischemia is significantly reduced after an episode of anoxia–
aglycemia [16]. It has also been shown that after preconditioning with 3-nitropropionic acid,
the expression of Ca2+-ATPase is enhanced in the cytoplasmic membrane of hippocampal
neurons [17]. Regarding the stabilizing effect of hypercapnia on intracellular calcium levels,
some conclusions can be extrapolated from data on the process of pH/PCO2 chemoreception
by the carotid body [18] and mast cell degranulation [19].

It is important to note that modeling transient global ischemia in rats enhances the
expression of Na+/Ca2+ exchanger genes in neurons, along with the expression of heat
shock proteins [20]. In this context, the main role in neurodamage is predominantly played
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by the sodium–calcium exchanger genes NCX1 and NCX3, which undergo increased
expression during brain ischemia [21], while upregulation of NCX2 expression participates
in the mechanism of neuroprotection induced by ischemic preconditioning [22].

The Na+/H+ exchanger and the Na+/K+/2Cl− cotransporter are also important ion
transporters as they participate in the regulation of acid–base balance and cellular fluid
volume [23]. In this regard, data on the inhibition of Na+/H+ exchanger (NHE1) expression
in pyramidal neurons of the CA1 region of the hippocampus after preconditioning episodes
are important [24]. Evidence has also been obtained confirming the involvement of the
interaction between the endoplasmic reticulum and mitochondria in the preconditioning
mechanism [11]. In particular, the key role of NCX isoforms in regulating Ca2+ homeostasis
in different subcellular compartments has been discussed in establishing an ischemia-
tolerant phenotype in neurons.

Recently, it was established that in hippocampal neurons from the CA1 region, after
exposure to permissive hypercapnia, the size of mitochondria increased, and the mem-
brane compartments of the endoplasmic reticulum expanded, while after exposure to
normobaric hypoxia, only the size of mitochondria increased [25]. Based on these data, it
can be assumed that these membrane structures, which support electrolyte and calcium
homeostasis, may be involved in the process of ischemia tolerance formation under the
combined influence of hypercapnia and hypoxia. However, detailed information for the
central nervous system has not yet been obtained.

Most of the information about the mechanisms of neuron resilience to ischemia/hypoxia
mentioned in this section has been studied regarding neurons in the CA1 region of the
hippocampus. This is because the CA1 region exhibits the highest sensitivity to oxygen
deficiency; therefore, the increase in neuron resilience to ischemia/hypoxia in this area
of the brain is considered a characteristic feature of the formation of ischemic tolerance
in the brain. Data on neuroprotective mechanisms can be extrapolated to other areas of
the brain [9].

2.2. Reprogramming of Cellular Metabolism

One of the earliest and most effective mechanisms for the formation of ischemic
tolerance in the brain involves signaling pathways that optimize cellular energetics under
conditions of oxygen–glucose deprivation [26]. Most of the information in this context
pertains to the adaptogenic effects of hypoxia, which has a pronounced influence on the
mitochondrial metabolism of nerve cells [27,28]. Regarding energy systems, it is known
that the neuroprotective effects of intermittent hypoxia are accompanied by a decrease in
the content of respiratory carriers at the terminal segment of the respiratory chain and a
reduction in their oxidative capacity [29]. Additionally, mitochondrial enzymatic complexes
undergo restructuring to operate in a more efficient mode, achieved by increasing the
efficiency of oxidative phosphorylation and the number of mitochondria in the cell [30].

The utilization of energy substrates after adaptogenic hypoxic exposure also undergoes
modifications. For instance, in an experiment by Brucklacher R.M. et al. [31], interesting
results were obtained: the level of glycogen in the rat brain increased 24 h after hypoxic
preconditioning, and the level of residual ATP at the end of a 90 min hypoxia–ischemia
was significantly higher than in the control group. Additionally, it was recently shown that
the increased intracellular level of lactate has a neuroprotective effect [32]. These data may
describe a complex of adaptive metabolic changes in the brain during the formation of
ischemic tolerance after intermittent hypoxic exposure.

It is known that glucose uptake and its utilization in brain tissues primarily occur with
the involvement of glucose transporter proteins GLUT1 and GLUT3, and their modulation
can increase ischemic tolerance [33]. It has also been shown that the expression of GLUT1
is enhanced by the action of the HIF-1α factor, which accumulates under hypoxic condi-
tions [34], and the antiapoptotic factor bcl-2 [35], activated by permissive hypercapnia [3].

It is important to consider the acidogenic potential of carbon dioxide, which reduces
both the activity of oxidative phosphorylation and the production of reactive oxygen species
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in mitochondria [36]. These effects, occurring under conditions of permissive hypercapnia,
likely influence the signaling pathways optimizing cellular metabolism in the mechanism
of neuroprotection. This is supported by data on the influence of permissive hypercapnia
on increasing the sizes of mitochondria in hippocampal neurons [25].

2.3. Remodeling of Intracellular Signaling Associated with Adenosine, Its Receptors, and
mitoK+

ATP Channels

Adenosine plays a significant role in increasing the tolerance of the brain to ischemia
when exposed to hypoxia [37]. It acts on the corresponding A1 receptors, which acti-
vate protein kinase C [37]. This signaling cascade leads to modification of mitoK+

ATP
channels, which decreases ATP synaptic transmission, shifting the CNS balance towards
inhibition [38]. These signaling molecules are of great importance both in the protective
mechanism of preconditioning and in the formation of stable tolerance of the brain to
ischemia [39,40].

Hypoxic preconditioning exerts effects on adenosine and A1 receptors similar to is-
chemic preconditioning [41]. For example, it has been shown that exposure to four cycles
of hypoxia in a preconditioning regimen in mice maintains the density of A1 receptors
and increases their affinity to adenosine in the CA1 region of the hippocampus, brain-
stem, and medulla oblongata, leading to a neuroprotective effect [42], while blockade
of cyclopentyladenosine A1 receptors abolishes the protective effect of both adenosine
administration and hypoxic preconditioning during global cerebral ischemia [43]. These
findings are supported by experiments with anoxic exposure on isolated hippocampal
slices under preconditioning conditions [44]. It has also been established that reducing the
level of extracellular adenosine leads to the loss of hypoxia-induced neuroprotection after
intermittent hypoxic exposure, which is directly associated with HIF-regulated expression
of target genes [45]. Additionally, the authors of [46] demonstrated that activation of A1
receptors reduces the chemosensitivity of respiratory neurons to increased CO2 levels but
not to decreased O2 levels. This suggests a possible biological antagonism of hypercapnia
and hypoxia when acting on these receptors.

Mitochondrial ATP-sensitive potassium channels are considered the final effector of
intracellular signaling after preconditioning [47,48], and their activation is an important
mechanism of neuroprotection [49]. Particularly significant in this regard are the following
studies: Zhang S. et al. [50], which demonstrated an increase in the expression and activity
of SUR1 and Kir6.2 (subunits of mitoK+

ATP channels) in samples of ischemic rat brain
after prolonged intermittent hypoxia, which were abolished by the administration of the
5-hydroxydecanoate channel blocker; Sun H.S. et al. [51], which found that exposure
to hypoxia prior to hypoxic–ischemic injury induced an elevation in the level of Kir6.2
isoform protein and enhanced the current activity of mitoKATP channels. Additionally, an
interesting observation is that hypercapnia leads to the activation of calcium-activated and
ATP-dependent potassium channels [52].

The evaluation of the impact of hypercapnia and hypoxia on the intracellular signaling
molecules described above, conducted on in vitro cellular models, reveals several important
findings [53]. Specifically, a stimulating effect of intermittent hypoxia, but not hypercapnia,
on the relative content of cells with A1 receptors in astrocytes after their isolation in culture
was discovered. This indicates the absence of a direct influence of CO2 on these receptors
when combined with hypoxic exposure. Additionally, it demonstrates that intermittent
hypoxia influences the epigenetic regulation of A1 receptors’ levels in astrocytes even after
their cultivation. This could be explained by the effects of the transcription factor HIF-1α,
which enhances the activity of adenosine receptors [54], or by the influence of hypoxia on
G proteins coupled to these receptors [55].

It has also been demonstrated that the assessment of the percentage of cells with A1
receptors in astrocyte cultures after chemical hypoxia in vitro shows a protective effect
of combined hypercapnia and hypoxia exposure [53]. This effect was observed both
in astrocyte cultures isolated from rats exposed to hypercapnic hypoxia in vivo and in
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astrocyte cultures subjected to equivalent exposure in vitro. It is reasonable to assume that
the results obtained regarding A1 receptors, which are less characteristic for astrocytes, will
also be applicable to neurons [56].

Under conditions of hypoxia and ischemia, there is an increase in the concentration of
reactive oxygen species [57] and changes in the ratios of GSH/GSSG and NAD+/NADH,
leading to the modification of cysteine thiol groups in membrane structures [9]. Moreover,
the elevation of intracellular levels of free oxygen radicals leads to pronounced activation of
mitoK+

ATP channels [58,59]. This is further facilitated by the enhancement of NO◦ synthesis
with the formation of peroxynitrite [60] and subsequent activation of protein kinase C [61].
Additionally, there is evidence that the selective activation of mitochondrial ATP-dependent
K+ channels in astrocytes induces delayed preconditioning [62] and increases glutamate
uptake in culture, which may provide additional protective benefits [63].

The assessment of the percentage of astrocytes expressing mitoK+
ATP channels in vitro,

cultured after exposure to normobaric hypoxia and permissive hypercapnia in vivo, in-
dicates the possibility of their regulation through epigenetic mechanisms. This could be
attributed to O2-deficient oxidative stress [64] and the activation of protein kinase C induced
by increased CO2/bicarbonate concentration and intracellular Ca2+ elevation [9]. Addition-
ally, the impact on astrocytes by sodium iodoacetate demonstrated a stabilizing effect of
hypercapnia on the regulation of the percentage of cells containing mitoK+

ATP channels.
Modeling focal (local) ischemic brain damage in rats using the photothrombosis

method of microvessels in the area of the temporal cortex, after exposure to hypercapnia
and/or hypoxia, revealed trends similar to the results obtained in vitro [65]. It was found
that permissive hypercapnia reduces the percentage of cells with A1 receptors in the
peri-infarct area of the rat brain and also decreases it when combined with normobaric
hypoxia. At the same time, permissive hypercapnia increases the relative content of cells
with mitoK+

ATP channels both with isolated exposure and in combination with normobaric
hypoxia (Figure 1) [53].
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neuroprotective efficacy of hypercapnia and hypercapnic hypoxia [53]. Red lines indicate inhibition;
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These findings are supported by the fact that administering blockers of A1 recep-
tors and mitoK+

ATP channels to rats prior to the combined exposure of hypercapnia and
hypoxia prevents the development of resistance to acute oxygen deficiency [65]. Interest-
ingly, blockade of adenosine receptors did not affect the protective efficacy of permissive
hypercapnia, unlike normobaric hypoxia. Meanwhile, blockade of mitoK+

ATP channels
prevented the development of resistance to acute hypoxia in both permissive hypercapnia
and normobaric hypoxia.
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2.4. Activation of Antioxidant Systems

There is ample evidence that free radical mechanisms play a role in the process of brain
damage caused by ischemia/reperfusion [66,67]. During reperfusion, there is an excessive
release of nitrous oxide, which can also contribute to ischemic tissue damage by generating
reactive nitrogen species such as peroxynitrite (product of the reaction of nitric oxide with
superoxide radicals) [68]. Due to its high penetrating ability, peroxynitrite penetrates the
plasma membrane more easily than superoxide anion, oxidizing intracellular molecules.
This leads to tyrosine protein nitration, lipid peroxidation, mitochondrial dysfunction, and
DNA damage [68].

Data suggest that the generation of the superoxide anion during preconditioning
is necessary for the subsequent development of ischemic tolerance [69,70]. For instance,
intravenous administration of recombinant superoxide dismutase to rats before ischemic
preconditioning prevented the development of tolerance to subsequent transient ischemia,
similar to enhancing the expression of HSP-70 [71]. Similar data exist regarding the pro-
tective properties of NO◦, involving the induction of gene expression underlying brain
preconditioning [72,73].

It is noteworthy that moderate concentrations of CO2 stimulate antioxidant
activity [74–76]. Specifically, this mechanism is mediated by the activation of glutathione
peroxidase [74] and superoxide dismutase [75,76]. Moreover, carbon dioxide may influence
the stability of the iron-transferrin complex [76], preventing iron ions from participating
in initiating free radical reactions [77]. It is also well known that the CO2 molecule can
neutralize reactive oxygen/nitrogen species by reacting with peroxynitrite and converting
to nitrocarbonate, which forms a carboxyl anion and a nitroxide anion upon reaction with
water [78,79] (Figure 2). Notably, in their experiment, the authors of [80] demonstrated that
moderate hypoxia and hypercapnia contribute to the activation of the antioxidant system
in vivo damage by increasing the expression of genes encoding cytoplasmic superoxide
dismutase, glutathione peroxidase, and peptide methionine sulfoxide reductase.
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2.5. Adaptive Endoplasmic Reticulum Response and Chaperone Cascade

Increased expression of heat shock protein genes is a universal cellular response to
damage, and their chaperone activity provides cytoprotection during stress [81]. In vivo
studies have shown that tolerance to cerebral ischemia is directly related to the induc-
tion of nonconstitutive HSP-70 (or GRP-78) and other chaperones [82], and early in vitro
studies have already confirmed that HSP-70 inactivation weakens adaptive cyto- and neu-
roprotection [83] The importance of HSP-70 in implementing the mechanism of adaptive
cytoprotection and the neuroprotective properties of its high levels are convincingly ar-
gued [84], as well as its role in immune suppression induced by ischemic stroke [85]. The
main functions of heat shock proteins, particularly HSP-70 (or GRP-78), include protein
folding during ribosomal synthesis, prevention of refolding of damaged proteins during
intracellular stress, and transmembrane protein transport [9]. It is also known to undergo
phosphorylation, which regulates some of its functions [81].

It is also known that HSP-70 can act as a direct antagonist of apoptosis [81]. HSP-
70-induced mitochondrial protection suggests stimulation of cell survival after ischemic
injury, and such an antiapoptotic effect is supported by the fact that HSP-70 overexpression
reduced the release of cytochrome C from mitochondria into the intermembrane space [86]
and nuclear translocation of apoptosis-inducing factor (AIF) [87].

Significant interest lies in the adaptive endoplasmic reticulum response during stress
in nerve cells, regulated by the chaperone cascade [88,89]. Key signaling mechanisms of
this cascade include the aforementioned chaperone GRP-78 (or HSP-70) [88] and NF-κB,
considered one of the main signaling “transmitters” of preconditioning [90]. Additionally,
there is evidence that HSP-70 can regulate NF-κB activation [91], mediating its antiapoptotic
function through the activation of the PKR/NF-κB-dependent protective pathway [92].

It has been found that the expression of the chaperone GRP-78 is lowest after exposure
to normobaric hypoxia [93], indicating pronounced disturbances in cellular metabolism and
deactivation of the adaptive potential of neurons, leading to ER dysfunction. This fact may
be due to the depletion of adaptogenic mechanisms in the ER after a 15-course exposure
to hypoxic conditions. Meanwhile, the content of GRP-78 after exposure to hypercapnic
hypoxia and permissive hypercapnia was higher than after exposure to hypoxia. This may
suggest that hypercapnia in combination with hypoxia has a pronounced effect on the
activation of the chaperone GRP-78, with carbon dioxide having a dominant influence in
this process (Figure 3). A similar trend was observed in the study of HSP-70 in the serum
of rats [94].

The transcription factor NF-κB, the level of which was assessed simultaneously with
GRP-78 [93], is typically found in an inactive state in the cytosol under resting conditions.
During stress and activation, it translocates into the nucleus, activating the transcription of
genes that inhibit apoptosis and promote cellular adaptation. It is also a key regulator of
initiating the tissue’s proinflammatory response to stress [95].

After isolated exposures to hypoxia and hypercapnia, NF-κB expression in the peri-
infarct area was also found to be more intense than in controls [93]. This could be attributed
to both the similar activity of hypercapnia and hypoxia in stimulating this factor and the
translocation of the active form of NF-κB from the cytoplasm to the nucleus. Data showing
that moderate intermittent hypoxia activates NF-κB in the hippocampus and neocortex,
thereby contributing to the development of tolerance to ischemia/hypoxia [96], supporting
the results obtained regarding normobaric hypoxia.

The content of NF-κB in the cytoplasm of nerve cells was highest after the combined
exposure to hypercapnia and hypoxia. The level of nuclear expression of NF-κB was also
most pronounced with the combined exposure to hypercapnia and hypoxia. In the group
exposed to permissive hypercapnia, the expression was less intense but significant com-
pared to the control level and normobaric hypoxia. This may suggest that the translocation
of this factor into the nucleus did not occur during hypoxia, whereas during hypercapnia,
there was an increase in cytoplasmic expression of NF-κB in combination with an increase
in its nuclear concentration, indicating the translocation of the activated factor into the
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nucleus. Taking this into account, the highest cytoplasmic and nuclear expression of NF-κB
in the hypercapnic hypoxia group can be explained by the fact that the combined effects
lead to a summation of effects, subsequently resulting in more pronounced neuroprotec-
tion. On the other hand, hypoxia and hypercapnia may activate different pathways for
NF-κB activation.

Int. J. Mol. Sci. 2024, 25, x  8 of 28 
 

 

It has been found that the expression of the chaperone GRP-78 is lowest after expo-
sure to normobaric hypoxia [93], indicating pronounced disturbances in cellular metab-
olism and deactivation of the adaptive potential of neurons, leading to ER dysfunction. 
This fact may be due to the depletion of adaptogenic mechanisms in the ER after a 
15-course exposure to hypoxic conditions. Meanwhile, the content of GRP-78 after ex-
posure to hypercapnic hypoxia and permissive hypercapnia was higher than after ex-
posure to hypoxia. This may suggest that hypercapnia in combination with hypoxia has a 
pronounced effect on the activation of the chaperone GRP-78, with carbon dioxide having 
a dominant influence in this process (Figure 3). A similar trend was observed in the study 
of HSP-70 in the serum of rats [94]. 

 
Figure 3. Impact of permissive hypercapnia and normobaric hypoxia on the chaperone GRP-78 and 
NF-κB factor. Green lines—activation/induction. Red lines—inhibition. EPR—endoplasmatic re-
ticulum; HSP-70/GRP-78—the 70-kilodalton heat shock proteins; NF-κB—Nuclear factor kap-
pa-light-chain-enhancer of activated B cells. 

The transcription factor NF-κB, the level of which was assessed simultaneously with 
GRP-78 [93], is typically found in an inactive state in the cytosol under resting conditions. 
During stress and activation, it translocates into the nucleus, activating the transcription 
of genes that inhibit apoptosis and promote cellular adaptation. It is also a key regulator 
of initiating the tissue�s proinflammatory response to stress [95]. 

After isolated exposures to hypoxia and hypercapnia, NF-κB expression in the pe-
ri-infarct area was also found to be more intense than in controls [93]. This could be 
attributed to both the similar activity of hypercapnia and hypoxia in stimulating this 
factor and the translocation of the active form of NF-κB from the cytoplasm to the nu-
cleus. Data showing that moderate intermittent hypoxia activates NF-κB in the hippo-
campus and neocortex, thereby contributing to the development of tolerance to ische-
mia/hypoxia [96], supporting the results obtained regarding normobaric hypoxia. 

The content of NF-κB in the cytoplasm of nerve cells was highest after the combined 
exposure to hypercapnia and hypoxia. The level of nuclear expression of NF-κB was also 
most pronounced with the combined exposure to hypercapnia and hypoxia. In the group 
exposed to permissive hypercapnia, the expression was less intense but significant com-

Figure 3. Impact of permissive hypercapnia and normobaric hypoxia on the chaperone GRP-78
and NF-κB factor. Green lines—activation/induction. Red lines—inhibition. EPR—endoplasmatic
reticulum; HSP-70/GRP-78—the 70-kilodalton heat shock proteins; NF-κB—Nuclear factor kappa-
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Thus, regarding the activation of the adaptive branch of the ER, it can be assumed that
the combined exposure to hypoxia and hypercapnia maximally increases the expression of
the chaperone GRP-78 and the NF-κB factor. In this context, the hypercapnic component,
when combined with hypoxia, dominates in the signaling pathway for the activation of
GRP-78 and the transcription factor NF-κB.

3. Modulation of the Life Cycle of Nerve Cells
3.1. Proliferative and Synthetic Activity

The potential proliferation of precursor stem cells provides the mature brain with
flexibility and self-renewal through neurogenesis, which occurs in response to external
stimuli and damage [97,98]. It has been shown that in the ischemia-tolerant brain, the
proliferation of precursor cells increases after focal ischemia and preconditioning [99,100].
Meanwhile, synaptogenesis is another potential mechanism of variability and self-renewal
after ischemic brain damage [101,102].

It is known that normobaric hypoxia activates synthetic and proliferative activity
in cells [103], and a number of recent experimental studies have shown that hypoxic
preconditioning enhances the proliferative activity of mesenchymal stem cells [104,105], as
well as neural stem cells [106].

The results obtained from assessing the morphogenetic parameters of nerve cells
following hypercapnic–hypoxic preconditioning prior to focal ischemic brain injury showed
the dominant influence of CO2 on the activation of synthetic activity in nerve cells [107].
This was manifested by an increase in the number of nucleoli in nerve cells, resulting from
increased synthesis of ribosomal RNA on nucleolus-forming chromosomes [108], leading to
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enhanced synthesis of neurotransmitters in neurons, structural proteins, and neurotrophic
factors in glial cells [109]. This process plays an important role in the mechanism of
neuroprotection against ischemic damage to nervous tissue, as the increased synthetic
function in microglial cells helps reduce the consequences of trophic disturbances, and the
elevated expression of neurotransmitters holds high reparative value for neurons in the
phase of paranecrosis and necrobiosis [9].

Monitoring the cellular index (a measure of proliferative activity in the xCELLigence®

RTCA system) in astrocyte–neuron cocultures in vitro after combined and isolated exposure
to hypercapnia and/or hypoxia demonstrated the following facts [110]:

• Oxygen–glucose deprivation only suppresses the activity of intact nerve cells for the
first 12 h of observation.

• Intermittent hypoxic exposure to astrocyte–neuron cocultures stimulates cellular activ-
ity, which remains elevated throughout the observation period in vitro.

• Acute oxygen–glucose deprivation does not affect the dynamics of the cellular index
in cocultures of cells obtained from rats after exposure to normobaric hypoxia in vivo,
indicating its protective effectiveness.

• Permissive hypercapnia delayedly increases cellular proliferative activity with the
formation of a prolonged latent period, which also indicates the protective potential
of CO2.

For hypoxic exposure, these effects may be due to the stimulating influence of in-
termittent hypoxia on the functioning of signaling pathways activating the transcription
factor HIF-1α, which triggers antiapoptotic mechanisms in cells [111,112], often associated
with many oncogenic hyperproliferative states [113]. In turn, permissive hypercapnia
likely enhances the proliferative activity of nerve cells due to the inhibitory effect of car-
bon dioxide on apoptosis in nerve cells [3], as well as the activation of MAPK and PI3K
systems in microglia, leading to increased synthesis of HIF-1α via the oxygen-independent
pathway [111,114,115]. Additionally, the signaling pathways of antiapoptotic mechanisms
during hypoxia and hypercapnia exposure will be detailed in the following section.

Thus, it can be asserted that the mechanism of neuroprotection during combined
hypoxia and hypercapnia exposure plays an important role in increasing cellular activity
and synthetic function in nerve cells, with the hypercapnic component being of paramount
importance in it (Figure 4).
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3.2. Modulation of Apoptosis

One of the most crucial mechanisms enhancing the brain’s tolerance to ischemia is
the inhibition of apoptosis in the peri-infarct zone [9,116]. This protective mechanism
during the reperfusion period prevents the death of partially damaged neurons in the
ischemic zone. Cells in the infarct core typically die through necrosis, while cells in the
peri-infarct zone undergo apoptosis [117]. It is well known that cell death due to necrosis
results in the loss of cellular membrane integrity and uncontrolled release of cell death
products into the extracellular space, initiating an inflammatory response in surrounding
tissues. On the other hand, cell death due to apoptosis allows for the avoidance of this, as it
concludes with the formation of apoptotic bodies (enclosed by plasma membrane) [9]. The
primary factor determining the cell death mechanism is the level of ATP inside the cell [118].
Additionally, in the context of therapeutic intervention, apoptosis is preferable to necrosis,
as it can be blocked by various treatment methods, allowing the preservation of partially
damaged tissue [116,119]. In other words, the more damaged cells in the ischemic injury
zone that undergo apoptosis (rather than necrosis), the greater the chances of preserving
their viability (including through pharmacological neuroprotectants) and reducing the
level of inflammatory reaction in the stroke focus.

There is ample evidence that hypoxic exposure (both in preconditioning and intermit-
tent influence) can exert an antiapoptotic effect. For instance, a study by Cantagrel S. et al. [120]
reported a reduction in apoptotic cells in the brain preconditioned with hypoxic exposure
24 and 48 h after experimental stroke. In the work of Coimbra-Costa D. et al. [121], it
was found that eight episodes of 3 h intermittent hypobaric hypoxia exposure in rats led
to a decrease in apoptotic protein levels in the brain astrocytes during acute damaging
hypoxia. Additionally, there is evidence of activation of the transcription factor HIF-1α in
cortical neurons following moderate hypoxic exposure, which led to the inactivation of
the p53 protein (which halts the cell cycle with DNA replication and initiates apoptosis)
and slowed down delayed cell death [122]. It should also be noted that a 6 h exposure to
severe hypoxia (FAO2 = 7%), including the overexpression of HIF-1α and oxidative stress,
led to increased activity of cytochrome C, AIF, and caspase-3 in the hippocampus during a
24 h reoxygenation period [123]. The apoptosis-inhibiting effect of normobaric hypoxia,
as mentioned earlier, may be associated with the activation of the PI3K system and the
antiapoptotic effects of HIF-1α [111,114,115].

It is known that the chaperone HSP-70, whose activity increases after hypoxic precon-
ditioning, inhibits apoptosis by stimulating the PKR/NF-κB-dependent pathway [92]. Ad-
ditionally, HSP-70 inhibits reactions that promote increased permeability of mitochondrial
membranes and the release of cytochrome C by blocking Bax and increasing the expression
of the antiapoptotic factor Bcl-2 [124]. An interesting fact is that specific domains of HSP-70
are involved in preventing the release of mitochondrial AIF and sequestering AIF in the
cytosol, supporting the hypothesis that HSP-70 has the potential to suppress cell death
through various mechanisms [125]. Activation of mitoK+

ATP channels, induced by hyper-
capnic and hypoxic exposures, prevents the activation of cytochrome C and, consequently,
also blocks the caspase-dependent apoptotic pathway [126].

In recent years, researchers from China have extensively elucidated the mechanisms
of apoptosis inhibition during the reperfusion period following transient cerebral ischemia
by permissive hypercapnia [3]. The authors demonstrated that inhalation of CO2 at a
moderate concentration (PaCO2 = 60–100 mmHg) inhibits the active form of the major
effector caspase-3, reduces the cytosolic content of cytochrome C and proapoptotic protein
Bax, and increases the concentration of the antiapoptotic protein Bcl-2 in mitochondria.
Moreover, based on the evaluation of apoptosis in the peri-infarct area during focal is-
chemia preceded by intermittent hypercapnia and/or hypoxia exposures, it was shown
that permissive hypercapnia, including in combination with hypoxia, exerts an inhibitory
effect on apoptosis [127].

In another experimental study, the content of cells with apoptotic inducers in the
peri-infarct area of the rat brain was investigated after exposure to hypercapnia and/or
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hypoxia (caspase-3, AIF, Bax, Bcl-2) [128]. The content of cells with proapoptotic factors
(caspase-3, AIF, and Bax) in the cells of the peri-infarct area of the brain decreased after
exposure to permissive hypercapnia and hypercapnic hypoxia, while the number of cells
with the antiapoptotic factor Bcl-2 increased after all modes of both combined and isolated
exposure to hypercapnia and hypoxia. Such effects of hypercapnia, primarily acting on the
mitochondrial apoptotic pathway, may be due to its antioxidant effects (see Section 2.4), as
well as the stabilization of the NAD+/NADH ratio and the buffering effect of bicarbonate
on Ca2+ [129].

The assessment of the relative content of cells with proapoptotic (caspase-3, Bax, and
AIF) and antiapoptotic (bcl-2) factors in astrocytes and neurons in vitro after hypercapnic
and/or hypoxic exposure preceding oxygen–glucose deprivation demonstrated compa-
rable results [128]. A pronounced effect of inhibiting apoptotic signaling pathways was
also observed after exposure regimes combining permissive hypercapnia and normobaric
hypoxia, and when they were intermittently applied, a positive effect was observed in both
astrocytes and neurons, while with continuous exposure, it was observed only in neuronal
cells. This may suggest that intermittent modes of moderate hypercapnia and hypoxia
exert a more pronounced neuroprotective effect, affecting not only neurons but also glial
cells, thus achieving high tolerance to ischemia [3,130].

The available experimental data on in vivo/in vitro models suggest that hypercapnic
exposure, both alone and in combination with hypoxia, leads to a reduction in the content
of cells with proapoptotic mediators and an increase in cells with antiapoptotic mediators
(Figure 5) [128]. This can be considered part of the mechanism of inhibiting apoptosis
and increasing the tolerance of the brain to damaging hypoxia/ischemia. The hypoxic
component, when combined with hypercapnia, also contributes to this neuroprotective
mechanism, mainly through indirect pathways.
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4. Maintenance of Selective Permeability of the Blood–Brain Barrier

Researchers emphasize the role of blood–brain barrier (BBB) dysfunction in the de-
velopment of various neurological disorders [131]. Impairment of BBB integrity and
permeability is a crucial element in the pathogenesis of hypoxic/ischemic and infectious
brain injury [132]. A multilevel system of chemical regulation of tissue homeostasis in the
brain has been identified, enhancing neuronal protection against stress and damage, as well
as the role of numerous growth and neurotrophic factors in reparative processes, largely
determining the outcomes and prognosis of brain hypoxic injury [133].

Several studies have shown that ischemic tolerance contributes to the preservation
of the BBB and reduces edema formation during controlled ischemia [134,135]. From a
mechanistic standpoint, it is clear that reducing inflammatory reactivity in the brain likely
contributes to preserving BBB integrity [136]. At the same time, preserving BBB integrity
may be an important feature of ischemic tolerance, considering the interaction between
damaged/vulnerable tissue and the circulation of inflammatory cells during reperfusion.

Evaluation of BBB permeability following exposure to hypercapnia and/or hypoxia
showed a stimulating effect of the hypercapnic component on maintaining the concen-
tration of Evans blue dye in the blood plasma at an elevated level even 24 h after its
intraperitoneal administration, while the indicators of the normobaric hypoxia group were
virtually indistinguishable from the control values [137]. In the same study, the optical
density of the dye measured in the brain tissue was also elevated in rats from the hypercap-
nic hypoxia group. These findings are likely associated with stimulation of angiogenesis
during hypercapnic–hypoxic training [94], as well as with the influence of CO2 and acidosis
on the constriction of resistive arterioles in peripheral organs and the dilation of arterioles
in the myocardium and brain [138]. Against this background, the moderate increase in dye
content in brain tissue in the hypercapnic hypoxia group is more objectively considered in
the context of the BBB permeability index, which takes into account the dye content in both
blood plasma and the brain.

Considering that the combined effect of intermittent hypercapnia and hypoxia resulted
in the lowest level of BBB permeability, it can be assumed that both of these components
influence this neuroprotective mechanism by activating different signaling pathways.

These results suggest that reduced BBB permeability is one of the probable mechanisms
underlying the formation of brain tolerance to ischemia after intermittent hypercapnic
exposure (including in combination with hypoxia). Supporting the neuroprotective effec-
tiveness of this mechanism are also the results demonstrating the positive effect of 3 h
permissive hypercapnia (60 and 80 mmHg) on BBB integrity when combined with hypoxia
in conditions of experimental ischemic brain injury [139]. As shown by the authors, this was
due to a decrease in the expression of the AQP4 protein, resulting in reduced brain edema.

It is known that matrix metalloproteinases, particularly MMP-9, disrupt the neurovas-
cular matrix during reperfusion, thereby leading to blood–brain barrier breakdown [140].
It has been shown that BBB integrity disruption, along with MMP-9 expression, was re-
duced after experimental ischemia in rats preceded by ischemic preconditioning [141]. This
is associated with the effects of HIF-1α, which induces the expression of the chaperone
HSP-70, which in turn suppresses MMP-9.

Many events in intercellular interactions at the BBB level are determined by the activity
of the transcription factor HIF-1, which mediates the cellular response to hypoxia [142]. It
is known that HIF-1-induced reactions in energy metabolism are reflected in changes in
glycolysis processes, lactate accumulation, and alterations in the nature of neuron–astroglial
metabolic coupling [143]. Among the genes controlled by HIF-1 are those encoding stromal
cell-derived factor 1 (SDF-1), glycolysis enzymes, and glucose and lactate transporters,
which are necessary for cell functioning under conditions of acute or chronic hypoxia [144].

Adhesion molecules released by endothelial cells (e.g., ICAM-1) mediate the firm adhe-
sion of leukocytes to the vessel lining and also trigger signaling cascades that contribute to
increased BBB permeability and leukocyte infiltration [145]. Increased ICAM-1 expression
by cerebral endothelial cells has been observed during ischemia/reperfusion [146]. Hy-
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poxic preconditioning, on the other hand, reduces the inflammatory response and blocks
elevated levels of ICAM-1, as well as inhibits neutrophil adhesion to endothelial cells [147].

An important role in the metabolic regulation of cerebral endothelial activity during
ischemic injury is attributed to lactate production, intercellular lactate transport, and
utilization [148]. Lactate production is closely associated with the cellular redox state,
particularly the ratio of NAD+/NADH in mitochondria [149], and this ratio is actively
influenced by the effects of hypoxia and hypercapnia, as discussed in Section 2.4.

Recent studies demonstrate the significance of epigenetic regulation in maintaining
the selective permeability and integrity of the BBB, which exert a neuroprotective effect
under the influence of microRNAs (miRNAs) [150]. For instance, the overexpression of
miRNA-126-3p/-5p in the ischemic brains of mice suppresses the effects of proinflam-
matory cytokines and adhesion molecules, preserving the integrity of cerebral vessel
endothelium and reducing the negative consequences of stroke [151]. In turn, this molecule
is activated by HIF-1α induced by hypoxic exposure [152]. Conversely, miRNA-34a is
activated in endothelial cells during episodes of acute hypoxia/ischemia, negatively affect-
ing mitochondrial function in these cells by impacting cytochrome C [153], while hypoxic
preconditioning inhibits this molecule [154].

Thus, the structure of the BBB under conditions of hypoxic/ischemic damage is under
the regulatory influence of a range of molecular-cellular systems [155]: epigenetic regulation
of cellular metabolism and neuroinflammation by transcription factors; trophic and mem-
brane factors supporting structural integrity and limited permeability; neuron–astroglial
metabolic coupling. Moreover, the combined effects of hypercapnia and hypoxia can
influence all these systems to varying degrees, forming a neuroprotective effect (Figure 6).
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It should be noted that there are also data regarding the negative impact of hypoxic
preconditioning on the integrity of the BBB. For instance, Chi O.Z. et al. demonstrated that
hypoxic preconditioning exacerbates BBB disruption through the VEGF signaling pathway,
suggesting the possibility of worsening brain edema during cerebral ischemia [156]. How-
ever, the authors in the mentioned study focused on the short-term (1 h) vasogenic effects
of hypoxic preconditioning and their influence on BBB permeability, equating them with
characteristics of its integrity.
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5. Effects of the Transcription Factor HIF-1α

In recent decades, there has been increasing interest in studying the biological effects
of the molecule hypoxia-inducible factor 1-alpha (HIF-1α). Such attention is primarily due
to its key role in the mechanism of cellular and tissue adaptation to oxygen deficiency and
ischemia, as evidenced by a number of works by authoritative scientists [30,157,158].

The HIF-1 factor plays an important role in the cellular response to changes in oxy-
gen homeostasis in mammals, and the main function of this protein is the induction of
gene transcription, regulating cellular oxygenation and increasing their tolerance to hy-
poxia/ischemia [157,158]. The number of discovered target genes activated by HIF-1
continues to increase and includes genes involved in angiogenesis, energy metabolism,
erythropoiesis, cell proliferation, vascular remodeling, and vasomotor reactions [159,160].
Moreover, activated HIF-1 exhibits proinflammatory and antimicrobial effects by modulat-
ing the cellular immune response [161] and shows proapoptotic effects specific to certain
cell types [162].

However, despite traditional views on the nature of the HIF-1α signaling mecha-
nism, based on oxygen-deficit accumulation, information has emerged about alternative
(noncanonical) mechanisms of its activation [163]. Such data are of high interest for re-
considering the relationship with this transcription factor, which is regulated not only
by hypoxic stimuli but may also serve as a target for potentiating protective effects from
several adaptogenic triggers. For example, the synthesis of HIF-1α can be realized through
oxygen-independent mechanisms, via reactions controlled by MAPK and PI3K systems,
which are important in growth, proliferation, and differentiation processes [111,114,115].
Additionally, it is known that increased transcriptional activity of HIF-1 is observed under
the influence of nitric oxide, TNFα, IL-1, and angiotensin [164]. Furthermore, there is
information about the degradation mechanism of HIF-1 through the chaperone-mediated
lysosomal autophagy pathway [165,166].

It should be noted that in many experimental studies on the classical O2-dependent
mechanism of HIF-1 activation, models are used that induce not only tissue oxygen de-
ficiency but also a concomitant increase in CO2 levels. Carbon dioxide, in turn, is also a
significant factor influencing intracellular homeostasis and may exert oxygen-independent
effects on HIF-1 activity.

There are studies demonstrating the stimulating effect of hypercapnia on HIF-1α. For
instance, in 2009, it was found that the administration of acetazolamide led to an increase
in HIF-1α concentration in the brain [167]. The authors positioned this as a direct effect
of the administered agent, although the main mechanism of its action involves carbonic
anhydrase inhibition with subsequent CO2 level elevation, which hypothetically could also
be the cause of the observed effect. In another study, Benderro GF et al. [168] assessed the
levels of HIF-1α and HIF-2α in the brain after 3 weeks of exposure to chronic hyperoxia
and hypercapnia, noting their increased accumulation.

It is important to note that there are publications with opposite conclusions regarding
the influence of hypercapnia on HIF-1α levels. For example, in an experimental study
by Selfridge A.C et al. [169], hypercapnia suppressed the stability of HIF protein and
the expression of its target gene in vivo and in vitro, which was associated with a direct
decrease in intracellular pH. Additionally, in the study by Raeis V.B. et al. [170], no cor-
relation was found between increased HIF-1α expression and CO2 levels after 24 h of
exposure of cardiomyocytes to hypercapnic hypoxia conditions in vitro. However, in these
studies, HIF protein suppression was observed when using a model with a high level of
hypercapnia (FetCO2 = 10%) and/or prolonged exposure (6–24 h), which could induce a
maladaptive effect. When studying the role of HIF-1α under conditions combining hy-
poxia with hypercapnia, it was found that permissive hypercapnia did not induce any
direct changes in HIF-1α levels, while hypercapnic hypoxia led to increased HIF-1α content
in the hippocampal tissues, astrocytes in vitro, and peri-infarct region of rat brains [171].
After chemical hypoxia, the content of HIF-1α in astrocytes in vitro was higher follow-
ing exposure to hypercapnic hypoxia in vivo (before cell isolation for culture) compared
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to hypoxia alone, suggesting a potentiating effect of hypercapnia. Similarly, analogous
data were observed after exposure to hypercapnic hypoxia in vitro (post cell isolation for
culture) preceding oxygen–glucose deprivation modeling. However, following exposure
to hypercapnic hypoxia preceding focal cerebral ischemia modeling in rats, the content
of cells expressing HIF-1α in the peri-infarct region was lower than after exposure to
hypoxia alone.

It is important to note that high levels of HIF-1α can disrupt apoptotic processes in
cells [111,172] and their energetic homeostasis [173], often associated with many oncogenic
conditions [174]. Consequently, excessive elevation of HIF-1α levels may be considered an
unfavorable factor in the pathogenesis of acute ischemic injury.

These facts suggest that the hypercapnic component, when combined with hypoxia,
modulates the signaling mechanism of HIF-1 activation under conditions of damaging
hypoxia/ischemia without directly affecting its accumulation. Such a mechanism may be
directed towards stimulating cellular adaptive potential and increasing the tolerance of
nervous tissue to ischemia/hypoxia by protecting against excessive HIF-1α accumulation
in response to moderate hypoxia [175].

Modeling focal ischemic brain injury in rats confirms that hypercapnia does not affect
HIF-1α under isolated conditions, but when combined with hypoxia, it reduces its content
in tissues. However, in the context of a greater neuroprotective potential of the combination
of hypoxia with hypercapnia, this can be considered as a protective mechanism against
excessive HIF-1 activation (Figure 7).
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6. Future Directions and Potential for Clinical Application

The phenomenon of potentiating hypoxia’s protective effects with hypercapnia is
of high interest for clinical application. Particularly promising is the use of hypercapnic
hypoxia in cases where the application of intermittent hypoxic training is limited due
to the duration of exposure and the large number of sessions within one course (1–15 h
hypoxic exposure with at least seven sessions) [28,176,177]. Additionally, intermittent
hypercapnic–hypoxic exposure has been shown to achieve protective effectiveness after
only three exposures, and increasing the frequency of exposures is accompanied by a
proportional increase in resistance [7]. However, combining respiratory hypercapnic–
hypoxic exposures with pharmacological modulators of neuro-/cardio-/cytoprotection
signaling pathways appears to be the most promising therapeutic strategy. The additional
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efficacy when combining neuroprotectants may be moderate, additive, or even synergistic
in some cases [178].

A promising approach for modulating the effects of HIF-1α during hypoxic training in-
volves combining interventions that affect both the traditional and alternative mechanisms
of its activation [179,180]. The combination of agents that enhance HIF-1α activity with
respiratory interventions and drugs affecting other adaptive mechanisms may be most effec-
tive. This is supported by the increased cardioprotective effect observed when combining
hypoxic preconditioning with opioid receptor antagonists and agonists [181,182], the neuro-
protective effect of hypercapnic–hypoxic exposures when combined with ATP-dependent
potassium channel activators and adenosine receptors [65], and angiotensin-converting
enzyme inhibitor [183].

Based on data on neuroprotective mechanisms, signaling pathways can be identified,
the additional stimulation of which has the potential to enhance protective effects when
combined with respiratory hypercapnic–hypoxic interventions. For example, pharmaceuti-
cals possessing antioxidant efficacy and exerting endothelial–protective effects may have
potential for enhancing the effectiveness of hypercapnic hypoxia [184]. Effective poten-
tiation may also be achieved through prolonging the effect of hypercapnia by carbonic
anhydrase inhibition [185].

It can also be hypothesized that the inhibition of JNK using synthetic pharmaceuticals
(e.g., IQ-1S), which exert a pronounced cardio-/neuroprotective effect, may have a high
potential for enhancing the protective effects of hypercapnic hypoxia [186].

Clinical studies have demonstrated the effectiveness of hypercapnic–hypoxic training
in the treatment of neurological disorders and diseases. For example, in a randomized
triple-blind placebo-controlled study, respiratory training with hypercapnic hypoxia was
shown to have a positive effect on the functional state of the nervous system in children
with cerebral palsy and can be used as a means to increase the effectiveness of standard
therapy for these patients [187]. Additionally, the effectiveness of hypercapnic hypoxia has
been demonstrated in the treatment of diabetic polyneuropathy in pediatric patients [188].
Such efficacy is likely associated with the high neuroplasticity and adaptogenic potential in
childhood [189].

Another promising application for hypercapnic–hypoxic breathing training is the
neurorehabilitation of patients with ischemic stroke. Particularly significant are the promis-
ing results of a pilot clinical study on the effectiveness of neurorehabilitation potential of
hypercapnic–hypoxic training in patients in the early period after ischemic stroke [190].

Interestingly, intermittent hypercapnic–hypoxic exposures find application not only
in rehabilitative medicine and neurology but also in urological and dental practice, which
can be explained by their positive influence on microcirculation parameters in organs and
tissues [191]. For example, it has been noted that the application of a course of hypercapnic–
hypoxic exposures in men improves perfusion of the prostate gland in chronic abacterial
prostatitis [192] and microhemocirculation in the salivary glands after sialolithectomy
procedures [193].

Commercial divers who engage in breath-hold diving (referred to as “Ama” in Japan)
are subjected to frequent and prolonged episodes of hypercapnic hypoxia [194]. This
circumstance, in turn, may decrease the likelihood of ischemic stroke and enhance the
resilience of the brain to ischemic-reperfusion injury. However, these individuals are also
exposed to elevated atmospheric pressure and low temperatures while underwater, and
breath-hold sessions are repeated multiple times within a relatively short period. As a result,
there is a high risk of disrupting adaptive mechanisms, inducing oxidative stress [195], and
developing decompression illness, which leads to ischemic brain injuries [194,196]. This
may also be attributed to psychosocial stress, which induces hyperventilation and hypocap-
nia in divers. However, it raises an intriguing possibility of the brain’s ischemic tolerance
formation after hypercapnic–hypoxic exposures accompanying breath-hold episodes in
commercial divers experiencing moderate stress.
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7. Conclusions

The hypothesis formulated regarding the mechanism of mutual potentiation of neuro-
protective effects of hypercapnia and hypoxia is supported by data on the molecular and
cellular mechanisms during their combined intermittent exposure. Most of the molecular
and cellular mechanisms involved in the formation of brain tolerance to ischemia are
influenced by both excess carbon dioxide and oxygen deficiency (Figure 8). However, some
signaling systems are associated with the predominance of only one of the components of
hypercapnic hypoxia exposure. For example, molecules such as HIF-1α and A1 receptors
are primarily influenced by hypoxic stimuli, while the NF-κB factor and maintenance of
selective blood–brain barrier permeability are mainly modulated by hypercapnia.
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Abbreviations

AIF Apoptosis-inducing factor
AQP4 Aquaporin-4
ATP Adenosine triphosphate
Bax Bcl-2-associated X protein
BBB Blood–brain barrier
Bcl-2 B-cell lymphoma 2
CNS Central nervous system
ER/EPR Endoplasmatic reticulum
GLUT1/-3 Glucose transporters
GPx Glutathione Peroxidase
GSH Glutathione
GSSG Glutathione disulfide
HIF-1α Hypoxia-inducible factor 1-alpha
HSP-70/GRP-78 The 70-kilodalton heat shock proteins
ICAM-1 Intercellular Adhesion Molecule 1
IL-1 Interleukin 1
IQ-1S 11H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt
JNK c-Jun N-terminal kinases
Kir6.2 subunits of mitoK+

ATP channels
MAPK Mitogen-activated protein Kinase
miRNA Micro ribonucleic acid
mitoK+

ATP channels Mitochondrial ATP-sensitive potassium channels
MMP-9 Matrix metalloproteinase-9
NAD+/NADH Nicotinamide adenine dinucleotide (oxidized and reduced form)
NCX1/-2/-3 Na+/Ca2+ exchanger (member 1/2/3)
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NHE1 Na-H exchanger isoform 1
PI3K Phosphoinositide 3-kinases
PKR Protein kinase R
pMSR Peptide Methionine(R)-S-Oxide Reductase
RNA Ribonucleic acid
SDF-1 stromal cell-derived factor 1
SOD Superoxide Dismutase
SUR1/ABCC8 ATP-binding cassette transporter sub-family C member 8
TNFα Tumor necrosis factor
VEGF Vascular endothelial growth factor
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